Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
13923
Download
2029
 
©Journal of Sports Science and Medicine (2022) 21, 376 - 382   DOI: https://doi.org/10.52082/jssm.2022.376

Research article
Comparison of The Effect of High- and Low-Frequency Vibration Foam Rolling on The Quadriceps Muscle
Masatoshi Nakamura1, , Kazuki Kasahara2, Riku Yoshida2, Yuta Murakami2, Ryoma Koizumi3, Shigeru Sato2, Kosuke Takeuchi4, Satoru Nishishita5,6, Xin Ye7, Andreas Konrad8
Author Information
1 Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki, Saga, Japan
2 Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
3 Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
4 Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Hyogo, Japan
5 Institute of Rehabilitation Science, Tokuyukai Medical Corporation, Osaka, Japan
6 Kansai Rehabilitation Hospital, Tokuyukai Medical Corporation, Osaka, Japan
7 Department of Rehabilitation Sciences, University of Hartford, West Hartford, USA
8 Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, Graz, Austria

Masatoshi Nakamura
✉ Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki, Saga, 842-8585, Japan
Email: nakamuramas@nisikyu-u.ac.jp
Publish Date
Received: 11-07-2022
Accepted: 13-07-2022
Published (online): 01-09-2022
 
 
ABSTRACT

Vibration foam rolling (VFR) intervention has recently gained attention in sports and rehabilitation settings since the superimposed vibration with foam rolling can affect several physiological systems. However, the sustained effect and a comparison of the effects of different VFR vibration frequencies on flexibility and muscle strength have not been examined. Therefore, in this study, we aimed to investigate the acute and sustained effects of three 60-s sets of VFR with different frequencies on knee flexion range of motion (ROM) and muscle strength of the knee extensors. Using a crossover, random allocation design, 16 male university students (21.2 ± 0.6 years) performed under two conditions: VFR with low (35 Hz) and high (67 Hz) frequencies. The acute and sustained effects (20 min after intervention) of VFR on knee flexion ROM, maximum voluntary isometric contraction (MVC-ISO) torque, maximum voluntary concentric contraction (MVC-CON) torque, rate of force development (RFD), and single-leg countermovement jump (CMJ) height were examined. Our results showed that knee flexion ROM increased significantly (p < 0.01) immediately after the VFR intervention and remained elevated up to 20 min, regardless of the vibration frequency. MVC-ISO and MVC-CON torque both decreased significantly (p < 0.01) immediately after the VFR intervention and remained significantly lowered up to 20 min, regardless of the vibration frequency. However, there were no significant changes in RFD or CMJ height. Our results suggest that VFR can increase knee flexion ROM but induces a decrease in muscle strength up to 20 min after VFR at both high and low frequencies.

Key words: Foam roller, flexibility, maximal voluntary muscle contraction, rate of force development, countermovement jump, prolonged effect


           Key Points
  • We investigated the acute and sustained effects of VFR with different frequencies on knee flexion range of motion and muscle strength of knee extensors.
  • A 180-s vibration foam rolling intervention with low and high frequencies can increase knee flexion range of motion but impairs maximal voluntary isometric and concentric contraction torque of knee extensors up to 20 min after the intervention.
  • However, there we no significant changes in rate of force development, i.e., index of explosive muscle strength and countermovement jump height.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2024 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.